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Abstract

Inversion of light scattering by a single spherical scatterer with or without a layered
structure is studied. " By numerical simulation of the statistical properties of experiments,
we can select those angles that will maximize the ability of the experiment to resolve a
sphere from a layered scatterer. Applying statistical decision theory, we obtain a criterion
for decision making that minimizes the probability of incorrect guesses.
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introduction

Inversion problems have existed in various branches ot engineering and physics for
a long time, but in the past twenty years they have recetved far more attention than ever
betore because of the avatlable of high speed computers. !'n the present paper, we are
going to invert light scattering information to recognize an inner structure of a spherical
object. Brecause intensities of scattering light are highly nonlinear tunctions of the size and
index of the scatterer, and noise is present, arbitrary pattern recognization is difficult. We
will restrict ourselfves to distinguishing two kinds ot refraction index patterns (uniform or a
layered sphere) with a range of parameters. We assume that the scatterer may be one of
two kinds of objects: a sphere with a uniform refractive index or a lavered sphere with
difterent refraction indices tor the core and shell, respectively. Our problems are: (1) For
given experimental conditions, is there enough information to make a decision? What is
the best choice of angles to vield the most significant statistics. (2) For given experimental
data, how should one make a decision that minimizes wrong guesses.

We assume that we already know the tollowing facts: The wave length A of the
light in vacuum is .4416 microns. For the u= uniform sphere (hypotheses 1), the varying
parameters are the radius R* and refraction index n%, in the ranges 4<R*/A<8 and
1.33<n* <1.8. For the /= layered sphere (hypotheses 2), the varying parameters are the
inner radius R.,, core and shell refraction indices nl, and nl,. They dre in the ranges
4<R1 /AT, L. 33<nfn < 1.5 and 1.55 <nf,m <1.8. The outer radius R(,m of the layered
sphere is fixed at Rom /A=8. Moreover, we assume there is a Gaussian noise added to the
scattered intensity with ¢//=0.1, where o is the width of the intensity distribution of the
Gaussian noise and I is the mean intensity of the light scattered at a given angle.

The method of examining general experimental data to decide between two
hypotheses is a classic problem in decision theory. A procedure in the absence of a priori
information was proposed by Neyman and Pearson! in 1933. Their results are expressed
in terms of ‘‘maximum likelihood ratios”’. An excellent overview is given by Kendall and
Stuart?. A readable description of the Bayes theorem approach to the same problem is
given by van Trees®. The close connection between these two approaches is touched on

by Middleton* in his section on binary detection systems.

Our problem is more general, in that we must estimate some continuous parameters
first, in order to make the best binary decision. In the present application, these parameters
are radii and indices of refraction. Thus our problem mixes continuous parameter
estimation with discrete parameter detection.

Distinguishability
We propose to study the statistical properties so that we may obtain & crit-rion for
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measuring the distinguishability.

Suppose the experimental light scattering data have been taken at (spherical)
scattering angles 6; and ¢=0: the intensity of the scattering light per unit solid angle is
denoted as 1(8;). We want to relate the observation information to the structure of the
scatterer.  Because noise is always mvolved and can not be separated from the
experimental data, it will mix the two hypotheses such that they can not be distinguished
when the noise level is relatively high. The noise level depends on the experimental
apparatus, the environment and the kind of data taken. For a given apparatus and
environment, we should measure such data to minimize the relative noise level,

For a single scattering process, the data measured at different angles are not
independent; they are correlated through complex formulas (Mie scattering for a sphere and
shell). Because of the complex relationships of the scattering tformulas. we can not
analytically solve and will use numerical simulations to our problem.

Let’s say the object is a uniform sphere with the parameter element n'Pe {R“ n*}
in the allowed range and the experimental observation is taken at M angles 6y, ... ,0y;.
Here M is a moderate number of order 10. We can regard the scattering as a mapping
from the parameter space N to an M dimensional observation space
LM={1(0,),....1(8y)}. Because noise is present, one point in T} space maps to an M
dimensional "box" in LY space. A similar mapping also applies for a layered object. If, at
each angle 6;, separate measurements with P different polarization intensities are made,
corresponding to different polarization of the incident and scattered beam, then PM will be
the dimension for the observation space. For simplicity of notation, however, we do not
always introduce an explicit polarization index.

In the following, we will define a resolution criterion. First, we generate a sct
%} which includes N elements of random parameters nf,’,) in the allowed ranges for
hypothesis j (j=1 for uniform sphere and j=2 for layLrLd object), where m=1,..N. Here N
is a large number of order 1000 The mth element n,,, of the uniform sphere set {n(')}
has two parameters R* and nm, and the mth element 1],,, of the layered object set {n®}
contains three parameters R,,, in» nf,, in and n,,, oum- With the added noise, one image for
each of the two sets {n“)} and {n(z)} are obtained in the obscrvatlon space LM Within
the overlap region of the two images in the observation space LY the two kinds of objects
are indistinguishable from the given M intensity measurements. We will give the definition
of overlap later. An event producing an image in the overlap region of the observation
space is regarded as an indistinguishable event for the two hypotheses. Counting the
number of the events which overlap in the observation space, we may get a measure of
indistinguishability between the two cases. The ratio of the number of overlapped events to
the total number events represents a measure of the indistinguishability.

We study the probability properties of the two hypotheses. In the obscrvation space,
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an image point from one hypothesis can always have a probability of overlap with the an
image of the other Kind of hypothesis.  Therctore we need to precisely define overlap of
images in the observation space. We use N (/(0)) for the number of events such the
intensity 18 in the range of /(0) to I(0)+dl(0) and N for the total number of events. We

then define an overlap function:
N @D D) Na2 O, Py |17
N N (H)

Fp(0.0,:{nV1{n®hH=

where the subscript p denotes the polarization and the superscript (1) and (2) are for
different hypotheses. The set of N (~1000) points in My possesses a subset Mo,
which overlap in the sense that it may no longer be possible to distinguish whether case
Jj=1 or j=2 is the correct with respect to a single measurement. We can choose a
threshold «; , of indistinguishability for 8; and measured intensity 7, by using the criteria

F®ul:nM L in h2ay, for all nie{n?’} 2)

to determine the elements of subset (n'?(8;)]. For observations at many angles, the joint
set of subsets for all measured angles

mY@,...6,01=~ O] 3)

i=1

measures the overall fuzziness of the experiment. As an application, we assume the
measurement is taken at given angles =25, 40, 90, 105, 125,140 for two polarizations (12
measurements). For simplicity we set all o, to be the same «;,=a. In Fig. 1 we show
the original set (dots) of parameters for the uniform sphere chosen by Monte Carlo
techniques, and its joint subset for 12 measurements (triangles). The ratio of the numbers
of the elements of the joint subset and the original set is about 10%. Therefore, about
90% of uniform sphere events (the dots not covered by the triangle in Fig. 1) are
distinguishable from the layered events in the L'? space. The superscript 12 is the number
of dimensions of the observation space, that is the number of measurements. The
remaining 10% of the events for the uniform sphere (the triangles in Fig. 1) are
indistinguishable from the layered scatterer for the given set of 12 measurements.

To produces a better resolution between these two hypotheses, a trivial approach is
to increase the number of the detectors so that the events in the new space LY (M>12)
will not overlap as much as in the orginal space L', In most experiments,
distinguishability is limited by the number of detectors. To make the most of the
equipment for a better resolution, one can rearrange the detectors for some optimized
angles so that the number of the elements in the joint subset is minimized. This can be
done by the following iteration procedure: First we randomly generate two parameter sets
MM} and {nP} as initial sampiing sets. Use Eq. (4) below to find the best angle 6, by
taking a minimum of the overlap function F for two polarizations over 8,. Substitute 6,
and the original sampling scts into Eq. (5), below, to obtain the subsets [n“)(el)] and
M@ (6,)] by Eq. (5). Iterating this procedure by using the new sets [n“)(8,)] in Egs. (4)
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and (3). we will obtain the second best angle 8, and the subset {n7(8,,8,)]. Repeat the
iteration procedure (4 and (5) tor angles 0, 0,,83, - - until the number ot elements of
the joint subset [N“)(8,.....8,)] is less than a desired value. With the optimization
completed for i-1 angles, we can optimaize over 8; using:

min [ [t 8, 1,:n V@0, DLIND O, ... 8:)]) (4)
top=t 0
("

e @), 8;1.801 if Fo(8:.0,:n'(0,.....8, )L INP(O,....0, D20

for all n’en”’(6,,....6;_)] (5)

Here we assumed that intensities of two polarizations (the subscript p) for each angle have
been measured.

Decision

In this section, we apply statistical decision theory to the inversion problem. Let /|
and H > denote the two hypotheses; 1 for the uniforrn sphere and 2 for the layered sphere.
Suppose we have obtained a set of experimental data for the intensities at several angles
I.xp(0;). We want to decide which class (uniform sphere or layered object) the scatterer
belongs to. We can use the least square fit to find the best fit for the hypothesis A:

2
vp=miny, [chpwn—l(ei,n"”) (©)
n i

within the permitted parameter space. A simple statistic to decide between these cases can
be chosen as v,-v,. Suppose the experimental data are from a uniform sphere, k=1.
Then v, is dominated by the experimental noise, usually a small value, while v, is a large
value because it is not dominated by noise but by the shift because of an incorrectly
chosen hypothesis. For some experimental data the fitting with wrong hypothesis may be
small if the number of the detectors is not large enough. The wrong fitting value of v
covers a large range of a uniform scale space. Therefore we use a log scale for the statistic

R=logio(v{/v3)

to decide between the two hypotheses. The decision rule can be obtained as follows.
Let’s assume we know the the conditional probability P(R | H}) of getting R under
hypothesis h. According to Neyman-Pearson"“, when a priori probability and the cost of

the decision are unknown, we may use a constraint condition on the probability Pg, of a
"false alarm” is:

Pr=a= I:P(R | H\)dR )

to find the threshold A, where « is the value permitted for a false alarm (we say H, while
H is true). After finding the threshold, we shall make decision by the criterion:
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it A(R)>X  choose H (8)

if AGR)<A  choose H )
where
ARY=PR | H\)IP(R | H ) (10)

is the maximum likelihood ratio.

The conditional probabilities, P(R | H,), can be obtained (ahead of time) by
numerical simulation. As an application, we generate a set consisting of 1000 elements of
random parameters for each hypothesis. We then calculate the intensitics of the light
scattering for these parameters at the angles =90, 105, ,120, 135, 150, 165 for both parallel
and perpendicular polarizations. Finally we add 10% noise to the calculated intensities and
regard the result as pseudo experimental data. To get the distribution profiles for both
cases, we also use the least square method

vi=min ¥ {I‘:.xp (0,)~1(6; ™) (1
Tl(h) i

to fit the pseudo experimental data with the best parameter 1. Here Ic‘p was computed
for source s (pscudo experimental data). vj, is the best least square fit for a set of
experimental data of source s by the hypothesis /i within the permitted paramete.-. Because
we used wide ranges for the parameters, the intensities have hundreds of oscillations over
the varying parameters. It is difficult to locate a global minimum for v}, because it has
hundreds of oscillations over the varying parameters. To make the programs more
efficient, we made lookup tables for the Bessel and Legendre functions. Defining
R’=log (v /v3) and counting the number of the events in which R* falls into the interval
(R,R+dR), denoted as N(R '), we obtain the distribution profile for the source s. In Fig. 2,
N(R®) vs R® is plotted for both sources. The left profile of this figure is for the source
s=1 the uniform sphere, while the right one is for the source s=2 the layered object. The

small overlap between the two curves in Fig. 2. shows that the resolunon of these two
cases is quite good.

15, Neyman and E. S. Pearson, ‘‘On the Problem of the Most Efficient Tests of Statistical
Hypotheses > Philosophical Trans. A, 231, 289 (1933)

2M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Volume 2 Hafner
Pubhshmg Co, New York (1967)

3H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part 1, John Wiley and
Sons, (1968)

4David Middleton, Introduction to Statistical Communication Theory, McGraw-Hill
(1960)
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Fig. 1. Joint subset and original parameter set for the uniform sphere. The vertical scale
is for R*/A. The 1000 dots (and triangles) are randomly selected from the available
parameter set {n‘"} for the uniform sphere. The triangles are for the elements of the
joint subset of uniform sphere for the 6 given angles and two polarizations; they are the
points indistinguishable from the layered objects. The ratio of the numbers of the
triangles and dots is about 10%, or about 90% of thc uniform sphere events are
distinguishable from layered objects. The original parameter set consists 1000 elements,
each one has two components of random numbers for the parameters of the uniform
sphere. The two parameters are the radius and refraction index in the ranges of
4<R*“/A<=8 and 1.33<n“<1.8. The measurements are taken for the intensities of two
polarizations (parallel and perpendicular) at 6 angles 06=25, 40, 90, 105, 125, 140.
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50 s=1 L s=2

R*=log (v} /v3)

Fig. 2. Distribution profiles. The vertical axis is N(R*) the number of events per unit R,
dR=().1 is used. The left profile is the distribution profile for the appropriate for uniform
spherical source, while the right one is for the layered scatterer. The measurements are
taken for the intensities of two polarizations (parallel and perpendicular) at 6 angles
0=90, 105, 120, 135, 150, 165 with 10% noise. The uncertainty of the parameter ranges
are follows: For the sphere, the two parameters arc the radius and refraction index in the
ranges of 4<R“/A<8 and 1.33<n"“<1.8. For the layered object, the three parameters are
the inner radius and refraction indices in the ranges of 4<R! <7, 1.33<nl,<1.5 and
1.55<nl, <1.8.
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